jagomart
digital resources
picture1_Matrix Pdf 174572 | 4 4 Notes Aii


 128x       Filetype PDF       File size 0.53 MB       Source: www.southhadleyschools.org


File: Matrix Pdf 174572 | 4 4 Notes Aii
transformations with matrices section 4 4 points on the coordinate plane can be represented by matrices the ordered pair can be represented by the x y column matrix at the ...

icon picture PDF Filetype PDF | Posted on 27 Jan 2023 | 2 years ago
Partial capture of text on file.
            TRANSFORMATIONS
                                         WITH
                                               MATRICES
                                                                       Section 4­4
             Points on the coordinate plane can be represented by 
             matrices.  The ordered pair ( ,  ) can be represented by the 
                                         x y
             column matrix at the right.
             Polygons on the coordinate plane can be represented by placing all of 
                                                          vertex matrix
             the column matrices into one matrix called a               .
                     with vertices
             ΔABC                 A(3, 2), B(4, ­2 ), 
             and          can be represented by 
                  C(2, ­1)                       the 
             following vertex matrix.                                        A
                                      
                                                                       C
                                                                                 B
                                           transformations
           You can use matrices to perform                  . 
           (translations, reflections, and rotations)
                                                         preimage
           Remember that the original figure is called the 
                                                       image
           and the figure after the transformation is the    .
            If the two figures are congruent then the 
                               isometry
            transformation is an        .
           Example 1
                            Translation
             a.  Find the coordinates of the vertices of the image of  
                                                                              
                quadrilateral        with        ,        ,        ,
                              QUAD        Q(2, 3)  U(5, 2)  A(4, ­2)
                and          , if it is moved 4 units to the left and 2 units up.
                    D(1, ­1)  
                Write the vertex 
                matrix for 
                quadrilateral
                              QUAD.
                Write the transformation 
                matrix.
           Example 1
                          continued
            Vertex Matrix           Translation          Vertex Matrix
                                      Matrix              of
              of QUAD                                        Q'U'A'D'
                             +                       =
             The coordinates of
                      are:
             Q'U'A'D' 
                     ,        ,
             Q'(­2, 5)  U'(1, 4)  
                     and         .
             A'(0, 0)    D'(­3, 1)
             b.  Graph the 
                preimage and 
                the image.
           Example 2
             Rectangle          is the result of a translation of rectangle
                       A'B'C'D'                                      ABCD.  
             A table of the vertices of each rectangle is shown. Find the coordinates 
             of         .
                A and D'
                  Rectangle      Rectangle
                   ABCD           A'B'C'D'
                    A              A'(­1, 1)
                    B(1, 5)        B'(4, 1)
                    C(1, ­2)       C'(4, ­6)
                    D(­4, ­2)      D'
            Dilations
                                                                  dilation
              When a figure is reduced or enlarged it is called a          .
                                                                              
              All linear dimensions of the preimage change in the same ratio.
              Example:  If the length of each side of a figure doubles, 
                               then the perimeter doubles, and vice versa.
              When a dilation occurs, the figures are not congruent, they are similar.
               Therefore, Dilations are not isometries.
               You can use scalar multiplication to perform dilations.
            Example 3 Dilation
                     has vertices          ,         ,             .  Dilate
              ΔJKL                J(­2, ­3)  K(­5, 4)  and L(3, 2)          ΔJKL 
              so that its perimeter is one­half the original perimeter. 
                                                                       
                 a.  Find the vertices of
                                         ΔJ'K'L'. 
                 Multiply the vertex
                                      
                 matrix for        by the
                            ΔJKL           
                 scale factor    to find 
                               ½ 
                 the vertices of        .
                                 ΔJ'K'L'
The words contained in this file might help you see if this file matches what you are looking for:

...Transformations with matrices section points on the coordinate plane can be represented by ordered pair x y column matrix at right polygons placing all of vertex into one called a vertices abc b and c following you use to perform translations reflections rotations preimage remember that original figure is image after transformation if two figures are congruent then isometry an example translation find coordinates quadrilateral quad q u it moved units left up d write for continued graph rectangle result abcd table each shown dilations dilation when reduced or enlarged linear dimensions change in same ratio length side doubles perimeter vice versa occurs not they similar therefore isometries scalar multiplication has dilate jkl j k l so its half multiply scale factor...

no reviews yet
Please Login to review.