jagomart
digital resources
picture1_Matrix Pdf 174479 | Sec2 1


 280x       Filetype PDF       File size 0.19 MB       Source: www.math.uh.edu


File: Matrix Pdf 174479 | Sec2 1
2 1 matrix operations math 2331 linear algebra 2 1 matrix operations jiwen he department of mathematics university of houston jiwenhe math uh edu math uh edu jiwenhe math2331 jiwen ...

icon picture PDF Filetype PDF | Posted on 27 Jan 2023 | 2 years ago
Partial capture of text on file.
                                         2.1 Matrix Operations
                                 Math 2331 – Linear Algebra
                                              2.1 Matrix Operations
                                                          Jiwen He
                                  Department of Mathematics, University of Houston
                                                  jiwenhe@math.uh.edu
                                         math.uh.edu/∼jiwenhe/math2331
        Jiwen He, University of Houston                     Math 2331, Linear Algebra                                       1 / 19
                                       2.1 Matrix Operations      Addition Multiplication Power Transpose
                                        2.1 Matrix Operations
                  Matrix Addition
                         Theorem: Properties of Matrix Sums and Scalar Multiples
                         Zero Matrix
                  Matrix Multiplication
                         Definition: Linear Combinations of the Columns
                         Row-Column Rule for Computing AB (alternate method)
                         Theorem: Properties of Matrix Multiplication
                         Identify Matrix
                  Matrix Power
                  Matrix Transpose
                         Theorem: Properties of Matrix Transpose
                         Symmetric Matrix
        Jiwen He, University of Houston                  Math 2331, Linear Algebra                                     2 / 19
                                       2.1 Matrix Operations      Addition Multiplication Power Transpose
     Matrix Notation
          Matrix Notation
          Two ways to denote m ×n matrix A:
              1   In terms of the columns of A:
                                               A= a a ··· a 
                                                            1      2               n
              2   In terms of the entries of A:
                                               a           · · ·    a       · · ·     a     
                                                     11                1j               1n
                                                      .                                   . 
                                                      .                                   . 
                                                      .                                   . 
                                       A= a                · · ·     a      · · ·     a     
                                               i1                      ij               in 
                                                      .                 .                 . 
                                                      .                 .                 . 
                                                       .                 .                 .
                                                   a        · · ·   a        · · ·    a
                                                    m1                mj               mn
          Main diagonal entries:
        Jiwen He, University of Houston                  Math 2331, Linear Algebra                                     3 / 19
                                       2.1 Matrix Operations      Addition Multiplication Power Transpose
     Matrix Addition: Theorem
          Theorem (Addition)
          Let A, B, and C be matrices of the same size, and let r and s be
          scalars.       Then
                  a. A+B =B+A                                           d. r(A+B)=rA+rB
                  b. (A+B)+C =A+(B+C) e. (r +s)A=rA+sA
                  c. A+0=A                                              f. r (sA) = (rs)A
          Zero Matrix
                                                 0 ···           0 ···         0 
                                                 .                              . 
                                                 .                              . 
                                                 .                              . 
                                         0 =  0 ···              0 ···         0 
                                                                                  
                                                 .                .             . 
                                                 .                .             . 
                                                     .             .             .
                                                    0 ···         0 ···         0
        Jiwen He, University of Houston                  Math 2331, Linear Algebra                                     4 / 19
The words contained in this file might help you see if this file matches what you are looking for:

...Matrix operations math linear algebra jiwen he department of mathematics university houston jiwenhe uh edu addition multiplication power transpose theorem properties sums and scalar multiples zero denition combinations the columns row column rule for computing ab alternate method identify symmetric notation two ways to denote m n a in terms entries j i ij mj mn main diagonal let b c be matrices same size r s scalars then d ra rb e sa f rs...

no reviews yet
Please Login to review.