117x Filetype PDF File size 0.66 MB Source: www.maths.manchester.ac.uk
f(AB), f(BA) Symmetr’n f(Jordan block) Sign function Five Theorems in Matrix Analysis, with Applications Nick Higham School of Mathematics TheUniversity of Manchester higham@ma.man.ac.uk http://www.ma.man.ac.uk/~higham/ Dundee(EMS)—March17,2006 Nick Higham Matrix Analysis 1 f(AB), f(BA) Symmetr’n f(Jordan block) Sign function WMFME Λ(AB)andΛ(BA) f(αI +AB) Outline f(AB) and f(BA) WMFME Λ(AB)andΛ(BA) f(αI +AB) Symmetrization Jordan Structure of f(A) Matrix Sign Identities Nick Higham Matrix Analysis 2 f(AB), f(BA) Symmetr’n f(Jordan block) Sign function WMFME Λ(AB)andΛ(BA) f(αI +AB) f(AB) and f(BA) For A;B ∈ Cn×n, AB 6= BA. HowareABandBArelated? Howaref(AB)andf(BA)related? m×n n×m Samequestionif A ∈ C , B ∈ C . Generalize to f(αI +AB) and f(αI +BA). m n Nick Higham Matrix Analysis 3 f(AB), f(BA) Symmetr’n f(Jordan block) Sign function WMFME Λ(AB)andΛ(BA) f(αI +AB) Sherman–Morrison–Woodbury Formula If U;V ∈ Cn×p and I +V∗A−1U is nonsingular then p ∗ −1 −1 −1 ∗ −1 −1 ∗ −1 (A+UV ) =A −A U(Ip+V A U) V A : Obtained, using A+UV∗ = A(I +A−1U ·V∗), from its simpler version −1 −1 A∈Cm×n (Im +AB) =I−A(In+BA) B B∈Cn×m Nick Higham Matrix Analysis 4
no reviews yet
Please Login to review.