jagomart
digital resources
picture1_Matrix Pdf 174357 | Matrixsa


 128x       Filetype PDF       File size 0.42 MB       Source: www.eng.cu.edu.eg


File: Matrix Pdf 174357 | Matrixsa
nd mechanics of structures 2 year mechanical engineering cairo university matrix structural analysis the stiffness method 2 axial bars 1 dim 2 input data 3 stiffness matrix 4 temperature effect ...

icon picture PDF Filetype PDF | Posted on 27 Jan 2023 | 2 years ago
Partial capture of text on file.
                                        nd
               Mechanics of Structures,            2  year, Mechanical Engineering, Cairo University
               MATRIX STRUCTURAL ANALYSIS – THE STIFFNESS METHOD...............2
               Axial Bars (1-Dim)...................................................................................................................................2
                 Input Data..............................................................................................................................................3
                 Stiffness Matrix.....................................................................................................................................4
                 Temperature Effect................................................................................................................................4
                 Degrees of Freedom..............................................................................................................................5
                 Basic Steps in the Method.....................................................................................................................5
                 Example (1)...........................................................................................................................................9
                 Properties of the Bar Stiffness Matrix.................................................................................................11
                 An Alternative Derivation of the Element Stiffness Matrix................................................................11
               Truss Elements (2-Dim).........................................................................................................................12
                 Degrees of Freedom............................................................................................................................12
                 The Element Stiffness Matrix.............................................................................................................12
                 Derivation of [k]..................................................................................................................................13
                 Example (2).........................................................................................................................................14
               Beam Elements (2-Dim).........................................................................................................................16
                 Degrees of Freedom............................................................................................................................16
                 The Stiffness Matrix............................................................................................................................16
                 An Outline of How to Derive [k]........................................................................................................17
                 Example (3).........................................................................................................................................17
                 Distributed Loads................................................................................................................................17
                 Example (4).........................................................................................................................................18
               Symmetry................................................................................................................................................20
               Plane Frames..........................................................................................................................................22
                 Global Versus Local Axes...................................................................................................................23
                 A Practical Example............................................................................................................................24
               Comments...............................................................................................................................................24
               References...............................................................................................................................................24
               Appendix – Formulas.............................................................................................................................25
                                           1/25                                             Matrix Structural Analysis
                                                         nd
                     Mechanics of Structures,            2  year, Mechanical Engineering, Cairo University
                     Matrix Structural Analysis – the Stiffness Method
                     Matrix structural analyses solve practical problems of trusses, beams, and 
                     frames.  The stiffness method is currently the most common matrix structural 
                     analysis technique because it is amenable to computer programming.  It is 
                     important to understand how the method works.  This document is essentially 
                     a brief introduction to the stiffness method (known as the finite element 
                     method, particularly when applied to continuum solid components).
                     Axial Bars (1-Dim)
                     For their simplicity, axial bars are useful in illustrating the method.  We will 
                     show the basic data to be inputted to a computer program.  Fig. 1 shows a 1-
                                                                                    2                  2
                     dim axially loaded bar.  Let P = 24 kN, A           = 400 mm , A  = 600 mm , L = 80 
                                                                    ADC                  CB
                     mm, and E = 200 GPa.
                     A typical computer program should calculate the x-displacement u of all basic 
                     points (named nodes).  The nodes of the bar are points A, D, C, and B.  The 
                     displacements of nodes A and B are known in advance, simply each is equal 
                     to zero.  Therefore, a computer program should calculate the displacements 
                     of nodes D and C (u  and u ).  A program should calculate the reaction forces 
                                             D       C
                     and the forces transmitted through the bar.  Moreover, it should calculate the 
                     normal stresses at the segments AD, DC, and CB.  Each segment is named 
                     an element.
                     
                       A. Mansour
                                                             2/25                                             Matrix Structural Analysis
                                                 nd
                  Mechanics of Structures,            2  year, Mechanical Engineering, Cairo University
                  Input Data
                  The coordinates of the nodes are given below:
                  Node number                Label of Fig.1             X coordinate - m
                  1                          A                          0.0
                  2                          D                          0.002
                  3                          C                          0.004
                  4                          B                          0.008
                  We should inform the program of the nodes associated with each element.
                                                            st                  nd
                  Element number      Label of Fig. 1     1  node              2  node
                  1                   AD                  1                    2
                  2                   DC                  2                    3
                  3                   CB                  3                    4
                  The previous two tables give the information required to calculate the length 
                  of each element.  For instance, the length of element (2), L  = 0.004 – 0.002 
                                                                             (2)
                  = 0.002 m.  By the same token L  = 0.008 – 0.004 = 0.004 m.
                                                   (3)
                  We should specify the material of each element or the relevant properties for 
                  each element.
                  Element number                           Young’s modulus (E) - Pa
                                                                   9
                  1                                        200 x 10
                                                                   9
                  2                                        200 x 10
                                                                   9
                  3                                        200 x 10
                                                                   9
                  4                                        200 x 10
                  Displacement Boundary Conditions (B.C.)
                  We know in advance that nodes 1 and 4 are fixed (since 1 and 4 are A and 
                  B).
                  Node number                              u
                  1                                        0.0
                  4                                        0.0
                  Force (load) Boundary Conditions
                  The forces at nodes D and C are known in advance.  The following table gives 
                  these boundary conditions:
                  Node number                              F - (N)
                                                            x
                  2                                        +24 000
                  3                                        0.0
                  F  is positive because it is in the positive x direction.  Usually if u for any node 
                   x2
                  is known in advance, then F for that node is unknown, and vice versa.
                                                    3/25                                             Matrix Structural Analysis
                                                                                            nd
                                 Mechanics of Structures,            2  year, Mechanical Engineering, Cairo University
                                 Having a full description of the problem, computer programs can determine all 
                                 the nodal displacements and forces.  The relationship among these variables 
                                 is given below.
                                 Stiffness Matrix
                                 A typical element (e) is shown in Fig. 2a.  The x-displacement of nodes 1 and 
                                 2 are u  and u .  The nodal forces are f  and f .  Of course, f  = -f . 
                                               1            2                                               x1           x2                           x1        x2
                                 However, in order to have a systematic representation, we will keep a 
                                 separate name for each nodal force.
                                 The element is elastic and by consulting Fig. 2b,
                                 f    = k  (u  – u ) = k  (-u  + u )
                                  x2        (e)     2        1         (e)       1       2
                                 Where,  k  = EA / L ; the elemental stiffness.
                                                    (e)
                                 Fig. 2c shows that
                                 f    = k  (u  – u )
                                  x1        (e)     1        2
                                 Where, f  is a compressive force and (u  – u ) represents a corresponding 
                                                  x1                                                          1        2
                                 contraction of the length of the element.
                                 The following matrix equation represents the previous two equations.
                                    f              k       − k  u 
                                      x1     =                           1              or           ( f )    = [k] (u)
                                    f            − k         k   u                                       e          e
                                     x2  e                        e    2 
                                 Where [ k ]  is a 2 x 2 stiffness matrix.  Now we can see why the method is 
                                                       e
                                 named matrix structural analysis or stiffness method.
                                 Temperature Effect
                                 We need to include the effect of temperature rise ∆T = T – T .  Fig. 2b gives:
                                                                                                                                                     0
                                  u  – u  = f  / k  + α L ∆T
                                     2       1       x2       (e)
                                 In addition, Fig. 2c gives
                                                                                                  4/25                                             Matrix Structural Analysis
The words contained in this file might help you see if this file matches what you are looking for:

...Nd mechanics of structures year mechanical engineering cairo university matrix structural analysis the stiffness method axial bars dim input data temperature effect degrees freedom basic steps in example properties bar an alternative derivation element truss elements beam outline how to derive distributed loads symmetry plane frames global versus local axes a practical comments references appendix formulas analyses solve problems trusses beams and is currently most common technique because it amenable computer programming important understand works this document essentially brief introduction known as finite particularly when applied continuum solid components for their simplicity are useful illustrating we will show be inputted program fig shows axially loaded let p kn mm l adc cb e gpa typical should calculate x displacement u all points named nodes d c b displacements advance simply each equal zero therefore reaction forces transmitted through moreover normal stresses at segments ad...

no reviews yet
Please Login to review.