jagomart
digital resources
picture1_Matrix Pdf 174217 | Lecture8 Handout


 135x       Filetype PDF       File size 0.19 MB       Source: users.physics.ox.ac.uk


File: Matrix Pdf 174217 | Lecture8 Handout
lecture8 basicmatrixalgebra prof n harnew university of oxford mt2012 1 outline 8 basic matrix algebra 8 1 addition of matrices 8 1 1 properties and an example 8 2 multiplication ...

icon picture PDF Filetype PDF | Posted on 27 Jan 2023 | 2 years ago
Partial capture of text on file.
                      LECTURE8:
           BASICMATRIXALGEBRA
                      Prof. N. Harnew
                    University of Oxford
                          MT2012
     1
              Outline: 8. BASIC MATRIX ALGEBRA
       8.1 Addition of matrices
          8.1.1 Properties and an example
       8.2 Multiplication by a scalar
          8.2.1 Example
       8.3 Multiplication of matrices
          8.3.1 Example 1
          8.3.2 Example 2
       8.4 Properties of matrix multiplication
          8.4.1 Proof of A(BC) = (AB)C
       2
                                                         8.1 Addition of matrices
                    ◮ Matrix summation follows the properties of linear algebra
                                                                                      C=A+B
                                                            Hence C =(A+B) =A +B
                                                                                    ij                        ij          ij          ij
                    ◮ Writing this out:
                                                      A                A           · · ·      A          B                       B           · · ·      B         
                                                              11           12                     1n                       11          12                     1n
                                                      A                A           · · ·      A          B                       B           · · ·      B         
                            C=A+B= 21                                     22                     2n + 21                            22                     2n 
                                                      ···              · · ·       · · ·       · · ·     ···                      · · ·      · · ·       · · ·    
                                                           A            A           · · ·      A                        B           B           · · ·      B
                                                              m1          m2                     mn                       m1           m2                     mn
                                                                                                                                                                   (1)
                                                        A11+B11                       A12 +B12               · · ·       A1n +B1n 
                                                  = A21+B21                           A22 +B21               · · ·       A2n +B2n                                  (2)
                                                                   · · ·                    · · ·            · · ·             · · ·          
                                                             Am1 +Bm1                 Am2 +Bm1                · · ·      Amn +Bmn
                    ◮ For this to have any meaning, both matrices must have the same
                          dimensions (in this case m × n).
               3
                    8.1.1 Properties and an example
         ◮ It follows obviously (and also from the rules of linear
            operators) that
            C=A+B=B+A(commutative).
         ◮ The difference of two matrices follows in an obvious way:
            C=A−BhaselementsC =A −B .
                                        ij    ij    ij
       Example
       C=A+B= 1 2 3 + 7                    8   9 = 8 10 12 
                       4 5 6           −2 −1 0              2   4    6(3)
       4
The words contained in this file might help you see if this file matches what you are looking for:

...Lecture basicmatrixalgebra prof n harnew university of oxford mt outline basic matrix algebra addition matrices properties and an example multiplication by a scalar proof bc ab c summation follows the linear b hence ij writing this out m mn bn am bm amn bmn for to have any meaning both must same dimensions in case it obviously also from rules operators that commutative difference two obvious way bhaselementsc...

no reviews yet
Please Login to review.