130x Filetype PDF File size 0.76 MB Source: profmath.uqam.ca
The K¨ahler geometry of toric manifolds Vestislav Apostolov Email address: apostolov.vestislav@uqam.ca Contents Preface 5 Acknowledgements 5 Chapter 1. Delzant Theory 7 1. Hamiltonian group actions on symplectic manifolds 7 2. Hamiltonian actions of tori 10 3. The complex projective space 12 4. Toric symplectic manifolds from Delzant polytopes 17 5. Toric complex varieties from Delzant polytopes. Fans 19 6. Equivariant blow-up 20 7. Polarized projective toric varieties 22 8. Toric orbifolds 24 Chapter 2. Abreu–Guillemin Theory 27 1. The orbit space of a toric manifold 27 2. Toric K¨ahler metrics: local theory 27 3. The scalar curvature 30 4. Symplectic versus complex: the Legendre transform 31 5. The canonical toric K¨ahler metric 33 6. Toric K¨ahler metrics: compactification 34 Chapter 3. The Calabi Problem and Donaldson’s theory 37 1. The Calabi problem on a toric manifold 37 2. Donaldson–Futaki invariant 40 3. Uniqueness 40 4. K-stability 41 5. Toric test configurations 42 6. Uniform K-stability 45 7. Existence: an overview 48 Bibliography 59 3
no reviews yet
Please Login to review.