jagomart
digital resources
picture1_Diagram Alir Pdf 8035 | Diagram Alir Model Binomial | Matematika


 226x       Tipe PDF       Ukuran file 0.07 MB    


File: Diagram Alir Pdf 8035 | Diagram Alir Model Binomial | Matematika
diagram alir penentuan harga opsi eropa dan amerika model binomial 1 pendahuluan metode binomial mengawali suatu model harga aset yang sederhana interval waktu didiskritkan ke titik titik dengan jarak sama ...

icon picture PDF Filetype PDF | Diposting 27 Jun 2022 | 3 thn lalu
Berikut sebagian tangkapan teks file ini.
Geser ke kiri pada layar.
                                                            Diagram Alir Penentuan Harga Opsi Eropa dan Amerika 
                                                                                                                            Model Binomial 
                                                     
                                                    1. Pendahuluan 
                                                                     Metode binomial mengawali suatu model harga aset yang sederhana. Interval 
                                                    waktu [0, T] didiskritkan ke titik-titik dengan jarak sama, 0 = t0 < t1 < ... < tm = T, 
                                                    dengan ti  it. Diberikan harga asset S0 pada saat t0 dan diasumsikan bahwa harga aset 
                                                    pada saat t1 bergerak turun ke dS0 atau bergerak naik ke uS0, dengan d < 1 dan u > 1. 
                                                    Selanjutnya  pada  saat  t2,  batasan  sama  untuk  bergerak  naik/  turun,  terdapat  tiga 
                                                    kemungkinan harga aset, yaitu d2S , udS , atau u2S . Proses diteruskan untuk t yang 
                                                                                                                                   0             0                       0                                                              i
                                                    naik, akan terdapat i + 1 harga aset yang mungkin pada saat ti  it, yang dirumuskan 
                                                                                                                       Si  S undin, 0  n  i.                                                                                              (1) 
                                                                                                                          n           0
                                                                     Pada saat expiry date,  t  t                                        T, terdapat M + 1 harga aset yang mungkin, 
                                                                                                                           i        M
                                                          M M                                        M M
                                                                                                       
                                                      Sn n0. Diambil  Vn                                  n0 menyatakan payoff dari suatu opsi Eropa pada saat expiry 
                                                    date, yang dirumuskan 
                                                                                                          M                                     M                     , 0  n  M,                                                            (2) 
                                                                                                                                                                 
                                                                                                     V          makscp S                            K,0
                                                                                                         n                                     n
                                                    dengan cp = 1 untuk call dan cp = –1 untuk put. Metode binomial berproses dengan 
                                                    bekerja mundur terhadap waktu. Suatu harga opsi Vi , yang berkorespondensi dengan 
                                                                                                                                                                         n
                                                    harga aset  Si  pada saat t, dihitung sebagai rata-rata berbobot dari dua harga aset, Vi1 
                                                                                n                           i                                                                                                                                 n
                                                    dan  Vi1,  pada  saat  ti+1.  Harga  saat  ini  adalah  perkiraan  harga  masa  depan  yang 
                                                                  n1
                                                    didiskon, yaitu 
                                                                                         i         rt              i1                          i1 , 0  n  i, 0  i  M – 1.                                                             (3) 
                                                                                                                                                        
                                                                                     V e                     pV            (1 p)V
                                                                                        n                           n1                          n
                                                    Rumus di atas akan berjalan ke t0 dan menghitung harga opsi yang diminta, V0. Jika 
                                                                                                                                                                                                                                     0
                                                    opsinya  adalah  Amerika,  maka  kita  dapat  menentukan  jika  opsinya  optimal  untuk 
                                                    ditahan atau di-exercise. Dalam kasus ini (3) menjadi 
                                                                                   i                                         i                        rt             i1                           i1,                             (4) 
                                                                               V maksmakscp S K,0,e                                                                pV            (1 p)V
                                                                                  n                                                n                                        n1                           n
                                                    dengan 0  n  i, 0  i  M – 1, cp = 1 untuk call dan cp = –1 untuk put. 
                                                                     Di sini, parameter p menyatakan probabilitas dari suatu pergerakan naik untuk 
                                                    harga aset. Parameter-parameter metode, yaitu t, u, d, dan p, harus dipilih sehingga 
                                                    model  aset  binomial  sesuai  dengan  versi  Black-Scholes  untuk  t    0.  Beberapa 
                                                    penyelesaian yang mungkin adalah dengan memilih ud = 1 atau p = 0.5. Untuk pilihan 
                                                    ud = 1 diperoleh penyelesaian: 
                                                                                                                            2                       1                          ert d
                                                                                                  u  A A 1, d  u, dan  p  ud ,                                                                                                          (5) 
                                                                                                                   2
                                                                                                                    
                                                                                1        rt              r t
                                                    dengan  A                     e              e                      , sedangkan untuk p = 0.5 diperoleh penyelesaian 
                                                                                2                                         
                                                                                                                          
                                                                                                                        rt                   dan                  rt                  ,                                                     (6) 
                                                                                                                                                                                   
                                                                                                            u  e              1B                      u  e             1B
                                                    Fitriani A                                                                                                                                                                                     1 
                                                    dengan B  e2t 1. 
                                                     
                                                    2. Diagram Alir 
                                                                         Berdasarkan rumusan masalah, program yang dibuat terdiri dari dua metode 
                                                    perhitungan  harga  opsi,  yaitu  metode  binomial  dan  rumus  Black-Scholes.  Program 
                                                    untuk metode binomial akan diaplikasikan untuk menghitung harga opsi call dan put 
                                                    Eropa  serta  call  dan  put  Amerika.  Untuk  rumus  Black-Scholes,  program  hanya 
                                                    diaplikasikan untuk harga opsi call dan put Eropa serta call Amerika, karena untuk 
                                                    harga opsi put Amerika tidak dipunyai rumus eksplisit. 
                                                     
                                                                                                         A
                                                                                            Input: S , K, r,
                                                                                                           0
                                                                                                 sigma, T,
                                                                                                 jns_opsi,
                                                                                                     T > 0                   tidak               Call ?              ya        Vbs = maks(S -K, 0)
                                                                                                                                                                                                          0
                                                                                                            ya                                          tidak
                                                                                        d , d , N(d ), N(d )                       Vbs = maks(K-S , 0)                                   SELESAI
                                                                                          1      2          1            2                                        0
                                                                                         C=Black-Scholes                                     SELESAI
                                                                                                    Call ?                  ya          Vbs = C                          SELESAI
                                                                                                            tidak
                                                                                      Vbs=C+Kexp(-rT)-K                                       SELESAI                                                                     
                                                                                                                                                      
                                                                                      Gambar 1: Diagram Alir untuk Harga Opsi Black-Scholes 
                                                                                                                                                      
                                                    Fitriani A                                                                                                                                                                                     2 
                                                                                                                                                              MULAI
                                                                                                                                                     Input: S , [K(k)], r,
                                                                                                                                                                   0
                                                                                                                                                   [sigma(s)], T, [M(n)],
                                                                                                                                                       pil_sol, jns_opsi,
                                                                                                                       cp = -1             tidak             jns_opsi:                    ya            cp = 1
                                                                                                                                                                call ?
                                                                                                                                                                 s = 1
                                                                                                                                                                 k = 1
                                                                                                                                                                 n = 1
                                                                                                                                                          dt = T/ M(n)
                                                                                                                    rumus (6):             tidak               pil_sol:                  ya         rumus (5):
                                                                                                                        u, d, p                                ud =1 ?                                  u, d, p
                                                                                                                                                      dp = d^[M(n):0],
                                                                                                                                                       up = u^[0:M(n)]
                                                                                                                                                                                                                          n = n + 1
                                                                                     k = k + 1                                                           V = rumus (2)
                                                                s = s + 1                                     V = rumus (4)                tidak             jns_opsi:                    ya        V = rumus (3)
                                                                                                                                                              Eropa ?
                                                                                              tidak               Cetak: Hasil=                ya             jns_opsi:                tidak
                                                                                                                 [sigma K M V]                            put Amerika?                               A
                                                                                            k =                                                                                                 Vbs - V
                                                                                    length(K) ?
                                                                                                              ya            n =                                                           Cetak: Hasil=
                                                                                              ya                     length(M) ?
                                                                                                                                                                                   [sigma K M V Vbs-V]
                                                                         tidak              s =                                tidak
                                                                                         length
                                                                                      (sigma) ?
                                                                                                                    Cetak: Hasil                                 jns_opsi:                 tidak          Plot Vbs-V vs dt
                                                                                                 ya                                                          put Amerika?
                                                                                                                                                                          ya                                   SELESAI
                                                                                                                                                               SELESAI                                                                       
                                                                                                                                                      
                                                                                           Gambar 2: Diagram Alir untuk Harga Opsi Binomial 
                                                                                                                                                      
                                                    Fitriani A                                                                                                                                                                                     3 
Kata-kata yang terdapat di dalam file ini mungkin membantu anda melihat apakah file ini sesuai dengan yang dicari :

...Diagram alir penentuan harga opsi eropa dan amerika model binomial pendahuluan metode mengawali suatu aset yang sederhana interval waktu didiskritkan ke titik dengan jarak sama t tm ti it diberikan asset s pada saat diasumsikan bahwa bergerak turun ds atau naik us d u selanjutnya batasan untuk terdapat tiga kemungkinan yaitu uds proses diteruskan i akan mungkin dirumuskan si undin n expiry date m sn diambil vn menyatakan payoff dari v makscp k cp call put berproses bekerja mundur terhadap vi berkorespondensi dihitung sebagai rata berbobot dua ini adalah perkiraan masa depan didiskon rt e pv p rumus di atas berjalan menghitung diminta jika opsinya maka kita dapat menentukan optimal ditahan exercise dalam kasus menjadi maksmakscp sini parameter probabilitas pergerakan harus dipilih sehingga sesuai versi black scholes beberapa penyelesaian memilih ud pilihan diperoleh ert a r sedangkan b fitriani et berdasarkan rumusan masalah program dibuat terdiri met...

no reviews yet
Please Login to review.