jagomart
digital resources
picture1_Excel Sample Sheet 41189 | Demand Metrics Excel Template


 245x       Filetype XLSX       File size 0.10 MB       Source: demandplanning.net


File: Excel Sample Sheet 41189 | Demand Metrics Excel Template
sheet 1 data month actual forecast jan10 360 442 feb10 381 469 mar10 391 371 apr10 601 654 may10 666 690 jun10 693 730 jul10 561 688 aug10 601 661 ...

icon picture XLSX Filetype Excel XLSX | Posted on 15 Aug 2022 | 3 years ago
Partial file snippet.
Sheet 1: Data
Month Actual Forecast
Jan-10 360 442
Feb-10 381 469
Mar-10 391 371
Apr-10 601 654
May-10 666 690
Jun-10 693 730
Jul-10 561 688
Aug-10 601 661
Sep-10 721 620

Sheet 2: Demand Metrics






































Month Actual Demand Quantity Forecasted Demand Mchockalingam: Error is with reference to the forecast. Deviation is with reference to the Average of the actual demand. Forecast Error Absolute Deviation (from Mean Demand) Mchockalingam: Deviation is with reference to the mean of the actual demand. Cumulative Absolute Deviation Cumulative Forecast Error Absolute Forecast Error Cumulative Abs Forecast. Error Relative Absolute Error Mchockalingam: Mean Absolute Deviation or MAD (from Forecasted quantity) used in calculating tracking signal. Running Mean Absolute Deviation (MAD) Signed % Error Absolute % Error Mchockalingam: calculating deviation of actual values in consecutive periods Delta between subsequent Demand Observations Mchockalingam: Tracking signal = Σ (actual − forecast) / MAD Tracking signal Mchockalingam: Used to calculate Root Mean Square Error Forecast Error Squared
Error^2
Mchockalingam: Used to calculate R-Square Squared Deviation from the Mean
(Deviation)^2
Mchockalingam: Used to calculate Durbin-Watson Error Auto-correlation:
[(Error at T) - (Error at (T-1)]^2

Mark Chockalingam: The small letters indicate column indexes. a b c d e f g h i j k l m n o p q r
Formula

(b-c)
cumulative (e) cumulative (d) absolute (d) Cumulative (h) i/f Running Mean of (h) d/b h/b
(cumulative (d)/k) (b-c)^2


Jan-10 360 442 -82.00 192.78 192.78 -82.00 82 82.00 0.43 82.00 -23% 23%
-1.00 6,724 37,163

Feb-10 381 469 -88.00 171.78 364.56 -170.00 88 170.00 0.47 85.00 -23% 23% 21 -2.00 7,744 29,508 36
Mar-10 391 371 20.00 161.78 526.33 -150.00 20 190.00 0.36 63.33 5% 5% 10 -2.37 400 26,172 11,664
Apr-10 601 654 -53.00 48.22 574.56 -203.00 53 243.00 0.42 60.75 -9% 9% 210 -3.34 2,809 2,325 5,329
May-10 666 690 -24.00 113.22 687.78 -227.00 24 267.00 0.39 53.40 -4% 4% 65 -4.25 576 12,819 841
Jun-10 693 730 -37.00 140.22 828.00 -264.00 37 304.00 0.37 50.67 -5% 5% 27 -5.21 1,369 19,662 169
Jul-10 561 688 -127.00 8.22 836.22 -391.00 127 431.00 0.52 61.57 -23% 23% 132 -6.35 16,129 68 8,100
Aug-10 601 661 -60.00 48.22 884.44 -451.00 60 491.00 0.56 61.38 -10% 10% 40 -7.35 3,600 2,325 4,489
Sep-10 721 620 101.00 168.22 1052.67 -350.00 101 592.00 0.56 65.78 14% 14% 120 -5.32 10,201 28,299 25,921
Total 4975.00 5325.00 -350.00 1052.67

592.00


-77% 115% 625.00
49,552 158,342 56,549
Average 552.78 591.67 Author: Forecast Bias -38.89 Author: Mean Absolute Deviation or MAD (from Average Demand) 116.96

Author: Mean Absolute Error or Average absolute Forecast Error 65.78


Mchockalingam: Mean percent Error - Not a recommended method since extremely small values will heavily influence this calculation. Recommended method is to use the Forecast Bias. -9% 13% 78.13
Mchockalingam: Mean Square Error 5,506 17,594
































Mchockalingam: MASE: Mean Absolute Scaled Error Formula=MAD/MAD attained on Historical sales MASE does not have an intuitive explanation and not widely adopted. MASE 0.84









Sr. No. Forecast Metrics Value













1 Number of Observations 9













2 Arithmetic Mean of Actual Demand 552.78













3 Mchockalingam: Also called Mean Absolute Error Mean Absolute Deviation (MAD) 65.78













4 Standard Deviation 140.69













5 Coefficient of Variation 25%













6 Mean Percent Error (MPE) -9%













7 Mean Absolute Percent Error ( MAPE) 13%













8 Forecast Bias -7.04%













9 Mchockalingam: formula= MAD/MEAN, also called as WMAPE; Weighted Mean Absolute Percent Error Weighted Absolute Percent Error (WMAPE) 11.90%













10 MAD-Mean Ratio 11.90%













11 Forecasting Efficiency Quotient 53.25%













12 R-Square 0.69













13 Mean Squared Error (MSE) 5,506













14 Root Mean Square Error (RMSE) 74.20













15 Median Absolute Percent Error (MdAPE) 10%













16 Tracking Signal -5.32













17 Mchockalingam: Geometric Mean of Relative Absolute Error Geometric Mean of Relative Absolute Error (GMRAE) 0.45













18 Durbin-Watson 1.14













19 Mean Absolute Scaled Error 0.84




























Sheet 3: Formulas Used
Sr. No Paramaeter
Formula
symbols used
1 Mean =


n Number of observations/sample space


Y, A Actual value


F Forecast Value










e error






k number of parameters
2 Standard Deviation



=






























3 R-Square




=


















4 Adjusted R-Square =






























5 Durbin-Watson =










































6 Forecast Error =




































7 MAPE =

































8 Root Mean Square Error =

































9 MAD =




































10 MASE =



























11 MAPE =
























12 Relative Absolute Error =


P(ij) Predicted value







Tj Target Value



















13 Forecasting Efficiency Quotient =





















The words contained in this file might help you see if this file matches what you are looking for:

...Sheet data month actual forecast jan feb mar apr may jun jul aug sep demand metrics quantity forecasted mchockalingam error is with reference to the deviation average of absolute from mean cumulative abs relative or mad used in calculating tracking signal running signed values consecutive periods delta between subsequent observations sigma minus calculate root square squared rsquare durbinwatson autocorrelation mark chockalingam small letters indicate column indexes a b c d e f g h i j k l m n o p q r formula bc if db hb total author bias percent not recommended method since extremely will heavily influence this calculation use mase scaled formulamadmad attained on historical sales does have an intuitive explanation and widely adopted sr no value number arithmetic also called standard coefficient variation mpe mape madmean as wmape weighted ratio forecasting efficiency quotient mse rmse median mdape geometric gmrae formulas paramaeter symbols observationssample space y parameters adjus...

no reviews yet
Please Login to review.