137x Filetype PDF File size 1.17 MB Source: www.math.lmu.de
Ordinary Differential Equations Peter Philip∗ Lecture Notes Originally Created for the Class of Spring Semester 2012 at LMU Munich, Revised and Extended for Several Subsequent Classes September 17, 2022 Contents 1 Basic Notions 4 1.1 Types and First Examples . . . . . . . . . . . . . . . . . . . . . . . . . . 4 1.2 Equivalent Integral Equation . . . . . . . . . . . . . . . . . . . . . . . . . 10 1.3 Patching and Time Reversion . . . . . . . . . . . . . . . . . . . . . . . . 11 2 Elementary Solution Methods 13 2.1 Geometric Interpretation, Graphing . . . . . . . . . . . . . . . . . . . . . 13 2.2 Linear ODE, Variation of Constants . . . . . . . . . . . . . . . . . . . . . 13 2.3 Separation of Variables . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16 2.4 Change of Variables . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20 3 General Theory 26 3.1 Equivalence Between Higher-Order ODE and Systems of First-Order ODE 26 3.2 Existence of Solutions . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 ∗E-Mail: philip@math.lmu.de 1 CONTENTS 2 3.3 Uniqueness of Solutions . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38 3.4 Extension of Solutions, Maximal Solutions . . . . . . . . . . . . . . . . . 44 3.5 Continuity in Initial Conditions . . . . . . . . . . . . . . . . . . . . . . . 56 4 Linear ODE 63 4.1 Definition, Setting . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63 4.2 Gronwall’s Inequality . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63 4.3 Existence, Uniqueness, Vector Space of Solutions . . . . . . . . . . . . . . 68 4.4 Fundamental Matrix Solutions and Variation of Constants . . . . . . . . 70 4.5 Higher-Order, Wronskian . . . . . . . . . . . . . . . . . . . . . . . . . . . 72 4.6 Constant Coefficients . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75 4.6.1 Linear ODE of Higher Order . . . . . . . . . . . . . . . . . . . . . 75 4.6.2 Systems of First-Order Linear ODE . . . . . . . . . . . . . . . . . 83 5 Stability 94 5.1 Qualitative Theory, Phase Portraits . . . . . . . . . . . . . . . . . . . . . 94 5.2 Stability at Fixed Points . . . . . . . . . . . . . . . . . . . . . . . . . . . 104 5.3 Constant Coefficients . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 113 5.4 Linearization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 118 5.5 Limit Sets . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 123 A Bernoulli Differential Equations 132 A.1 α<0Is Not an Integer . . . . . . . . . . . . . . . . . . . . . . . . . . . . 133 A.2 α>0Is Not an Integer . . . . . . . . . . . . . . . . . . . . . . . . . . . . 134 A.3 α Is an Odd Integer . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 137 A.4 α Is an Even Integer . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 139 B Differentiability 141 C Kn-Valued Integration 141 C.1 Kn-Valued Riemann Integral . . . . . . . . . . . . . . . . . . . . . . . . . 142 CONTENTS 3 C.2 Kn-Valued Lebesgue Integral . . . . . . . . . . . . . . . . . . . . . . . . . 145 D Local Lipschitz Continuity 148 E Maximal Solutions on Nonopen Intervals 151 F Paths in Rn 151 G Matrix-Valued Functions 155 G.1 Product Rule . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 156 G.2 Integration and Matrix Multiplication Commute . . . . . . . . . . . . . . 156 H Autonomous ODE 157 H.1 Equivalence of Autonomous and Nonautonomous ODE . . . . . . . . . . 157 H.2 Integral for ODE with Discontinuous Right-Hand Side . . . . . . . . . . 158 I Polar Coordinates 159 J Perspective: Short Introduction to PDE 167 J.1 Prototypes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 167 J.2 Laplace’s and Poisson’s Equation . . . . . . . . . . . . . . . . . . . . . . 169 J.2.1 The Fundamental Solution . . . . . . . . . . . . . . . . . . . . . . 169 J.2.2 Boundary Conditions . . . . . . . . . . . . . . . . . . . . . . . . . 171 J.2.3 Green’s Functions . . . . . . . . . . . . . . . . . . . . . . . . . . . 172 J.2.4 Poisson’s Formula for a Ball . . . . . . . . . . . . . . . . . . . . . 174 J.2.5 Poisson’s Formula for a Half-Space . . . . . . . . . . . . . . . . . 174 References 176 1 BASIC NOTIONS 4 1 Basic Notions 1.1 Types of Ordinary Differential Equations (ODE) and First Examples Adifferential equation is an equation for some unknown function, involving one or more derivatives of the unknown function. Here are some first examples: y′ = y; (1.1a) y(5) = (y′)2 + π x; (1.1b) (y′)2 = c; (1.1c) ∂ x = e2πit x2; (1.1d) t ′′ −1 x =−3x+ 1 : (1.1e) Onedistinguishes between ordinary differential equations (ODE) and partial differential equations (PDE). While ODE contain only derivatives with respect to one variable, PDE can contain (partial) derivatives with respect to several different variables. In general, PDE are much harder to solve than ODE. The equations in (1.1) all are ODE, and only ODE are the subject of this class (a short introduction to the topic of PDE, including some examples, can be found in Section J of the Appendix). We will see precise definitions shortly, but we can already use the examples in (1.1) to get some first exposure to important ODE-related terms and to discuss related issues. As in (1.1), the notation for the unknown function varies in the literature, where the two variants presented in (1.1) are probably the most common ones: In the first three equations of (1.1), the unknown function is denoted y, usually assumed to depend on a variable denoted x, i.e. x 7→ y(x). In the last two equations of (1.1), the unknown function is denoted x, usually assumed to depend on a variable denoted t, i.e. t 7→ x(t). So one has to use some care due to the different roles of the symbol x. The notation t 7→ x(t) is typically favored in situations arising from physics applications, where t represents time. In this class, we will mostly use the notation x 7→ y(x). There is another, in a way a slightly more serious, notational issue that one commonly encounters when dealing with ODE: Strictly speaking, the notation in (1.1b) and (1.1d) is not entirely correct, as functions and function arguments are not properly distin- guished. Correctly written, (1.1b) and (1.1d) read ∀ y(5)(x) = y′(x)2 + πx; (1.2a) x∈D(y) ∀ (∂ x)(t) = e2πit x(t) 2; (1.2b) t t∈D(x)
no reviews yet
Please Login to review.