jagomart
digital resources
picture1_Data Mining Notes 181259 | Dm2002


 166x       Filetype PDF       File size 0.84 MB       Source: www.stats.ox.ac.uk


File: Data Mining Notes 181259 | Dm2002
statistical data mining b d ripley may2002 c c b d ripley1998 2002 materialfromripley 1996 is b d ripley1996 c materialfromvenablesandripley 1999 2002 is springer verlag newyork 1994 2002 i ...

icon picture PDF Filetype PDF | Posted on 30 Jan 2023 | 2 years ago
Partial capture of text on file.
               Statistical Data Mining
                          B. D. Ripley
                            May2002
              c                       c
              B.D.Ripley1998–2002. MaterialfromRipley(1996)isB.D.Ripley1996.
                                   c
              MaterialfromVenablesandRipley(1999,2002)isSpringer-Verlag,NewYork
              1994–2002.
                                                    i
                Introduction
                This material is partly based on Ripley (1996), Venables & Ripley (1999, 2002)
                andtheon-linecomplements availableat
                        http://www.stats.ox.ac.uk/pub/MASS4/
                Mycopyrightagreements allow me to use the material on courses, but no further
                distributionis allowed.
                 The S code in this version of the notes was tested with S-PLUS 6.0 for
                Unix/Linuxand Windows,andS-PLUS 2000 release 3. With minorchanges it
                workswithRversion 1.5.0.
                 Thespecific add-ons forthe material in thiscourse are available at
                       http://www.stats.ox.ac.uk/pub/bdr/SDM2001/
                 All the other add-on libraries mentioned are available for Unix and for Win-
                dows. Compiledversions forS-PLUS 2000 are availablefrom
                         http://www.stats.ox.ac.uk/pub/SWin/
                and for S-PLUS 6.x from
                      http://www.stats.ox.ac.uk/pub/MASS4/Winlibs/
                                 ii
                                 Contents
                                 1 OverviewofDataMining                                                       1
                                     1.1 Multivariateanalysis ........................ 2
                                     1.2  Graphical methods ......................... 3
                                     1.3 Clusteranalysis........................... 13
                                     1.4  Kohonen’sself organizingmaps .................. 19
                                     1.5 Exploratoryprojectionpursuit ................... 20
                                     1.6 Anexampleofvisualization .................... 23
                                     1.7 Categoricaldata........................... 30
                                 2   Tree-based Methods                                                      36
                                     2.1  Partitioningmethods . . . ..................... 37
                                     2.2  Implementation inrpart ...................... 49
                                 3   Neural Networks                                                         58
                                     3.1 Feed-forwardneuralnetworks ................... 59
                                     3.2  Multiplelogisticregression and discrimination   .......... 68
                                     3.3 Neuralnetworksinclassification.................. 69
                                     3.4  Alookatsupportvector machines ................. 76
                                 4   Near-neighbour Methods                                                  79
                                     4.1  Nearest neighbourmethods ..................... 79
                                     4.2 Learningvectorquantization.................... 85
                                     4.3 Forensicglass............................ 88
                                 5   Assessing Performance                                                   91
                                     5.1 Practicalwaysofperformanceassessment............. 91
                                     5.2 Calibrationplots........................... 93
                                     5.3 PerformancesummariesandROCcurves ............. 95
                                     5.4 Assessinggeneralization ...................... 97
                                 References                                                                  99
              Contents                        iii
              Index                          105
The words contained in this file might help you see if this file matches what you are looking for:

...Statistical data mining b d ripley may c materialfromripley is materialfromvenablesandripley springer verlag newyork i introduction this material partly based on venables andtheon linecomplements availableat http www stats ox ac uk pub mass mycopyrightagreements allow me to use the courses but no further distributionis allowed s code in version of notes was tested with plus for unix linuxand windows ands release minorchanges it workswithrversion thespecic add ons forthe thiscourse are available at bdr sdm all other libraries mentioned and win dows compiledversions fors availablefrom swin x from winlibs ii contents overviewofdatamining multivariateanalysis graphical methods clusteranalysis kohonen sself organizingmaps exploratoryprojectionpursuit anexampleofvisualization categoricaldata tree partitioningmethods implementation inrpart neural networks feed forwardneuralnetworks multiplelogisticregression discrimination neuralnetworksinclassication alookatsupportvector machines near neighb...

no reviews yet
Please Login to review.