jagomart
digital resources
picture1_Bisection Method Example Problems With Solution Pdf 175611 | Ch02 Item Download 2023-01-28 09-42-20


 135x       Filetype PDF       File size 0.54 MB       Source: math.ntnu.edu.tw


File: Bisection Method Example Problems With Solution Pdf 175611 | Ch02 Item Download 2023-01-28 09-42-20
chapter 2 solutions of equations in one variable hung yuan fan department of mathematics national taiwan normal university taiwan spring 2016 hung yuan fan dep of math ntnu taiwan chap ...

icon picture PDF Filetype PDF | Posted on 28 Jan 2023 | 2 years ago
Partial capture of text on file.
                                                                                                                          Chapter 2
                                                       Solutions of Equations in One
                                                                                                                                Variable
                                                                                                      Hung-Yuan Fan (范洪源)
                                                                                                              Department of Mathematics,
                                                                                        National Taiwan Normal University, Taiwan
                                                                                                                                  Spring 2016
                                                                                                                                                                                                            .      .    .    .   .    .   .    .   .    .   .    .    .   .   .        .        .      .     .    .
                                                                                                                                                                                                       .    .      .     .   .   .    .    .   .   .    .    .   .    .   .    .       .         .     .     .
              Hung-Yuan Fan (范洪源), Dep. of Math., NTNU, Taiwan                                                                                                    Chap . 2, Numerical Analysis (I)                                                        1/108
                                                                                                                     Section 2.1
                                                                               The Bisection Method
                                                                                                                               (二分法)
                                                                                                                                                                                                            .      .    .    .   .    .   .    .   .    .   .    .    .   .   .        .        .      .     .    .
                                                                                                                                                                                                       .    .      .     .   .   .    .    .   .   .    .    .   .    .   .    .       .         .     .     .
              Hung-Yuan Fan (范洪源), Dep. of Math., NTNU, Taiwan                                                                                                    Chap . 2, Numerical Analysis (I)                                                        2/108
            Solutions of Nonlinear Equations
                         Root-Finding Problem (勘根問題)
                                           One of the most basic problems in numerical analysis.
                                           Try to find a root (or solution) p of a nonlinear equation of
                                           the form
                                                                                                                                                   f(x) = 0,
                                           given a real-valued function f, i.e. f(p) = 0.
                                           The root p is also called a zero (零根) of f.
                         Note: Three numerical methods will be discussed here:
                                           Bisection method
                                           Newton’s (or Newton-Raphson) method
                                           Secant and False Position (or Regula Falsi) methods
                                                                                                                                                                                                            .      .    .    .   .    .   .    .   .    .   .    .    .   .   .        .        .      .     .    .
                                                                                                                                                                                                       .    .      .     .   .   .    .    .   .   .    .    .   .    .   .    .       .         .     .     .
              Hung-Yuan Fan (范洪源), Dep. of Math., NTNU, Taiwan                                                                                                    Chap . 2, Numerical Analysis (I)                                                        3/108
            The Procedure of Bisection Method
                         Assume that f is well-defined on the interval [a,b].
                                           Set a = a and b = b. Find the midpoint p of [a ,b ] by
                                                                1                                               1                                                                                                           1                        1            1
                                                                                                                                                   b −a                                          a +b
                                                                                                       p =a + 1                                                               1 = 1                                      1.
                                                                                                            1                     1                             2                                            2
                                           If f(p ) = 0, set p = p and we are done.
                                                               1                                                                    1
                                           If f(p1) ̸= 0, then we have
                                                              f(p ) · f(a ) > 0 ⇒ p ∈ (p ,b ). Set a = p and b = b .
                                                                        1                      1                                                          1          1                                2                    1                           2                    1
                                                              f(p ) · f(a ) < 0 ⇒ p ∈ (a ,p ). Set a = a and b = p .
                                                                        1                      1                                                         1           1                                2                   1                           2                    1
                                           Continue above process until convergence.
                                                                                                                                                                                                            .      .    .    .   .    .   .    .   .    .   .    .    .   .   .        .        .      .     .    .
                                                                                                                                                                                                       .    .      .     .   .   .    .    .   .   .    .    .   .    .   .    .       .         .     .     .
              Hung-Yuan Fan (范洪源), Dep. of Math., NTNU, Taiwan                                                                                                    Chap . 2, Numerical Analysis (I)                                                        4/108
The words contained in this file might help you see if this file matches what you are looking for:

...Chapter solutions of equations in one variable hung yuan fan department mathematics national taiwan normal university spring dep math ntnu chap numerical analysis i section the bisection method nonlinear root finding problem most basic problems try to find a or solution p equation form f x given real valued function e is also called zero note three methods will be discussed here newton s raphson secant and false position regula falsi procedure assume that well defined on interval set b midpoint by if we are done then have continue above process until convergence...

no reviews yet
Please Login to review.