jagomart
digital resources
picture1_Calculus Pdf 170502 | Some Very Challenging Calculus Problems 2


 141x       Filetype PDF       File size 0.22 MB       Source: www.math.ucla.edu


File: Calculus Pdf 170502 | Some Very Challenging Calculus Problems 2
someverychallengingcalculusproblems joseph breen here are two difcult calculus problems solved using only sophisticated and clever applications of elementary calculus in particular there is no complex analysis or use of the ...

icon picture PDF Filetype PDF | Posted on 26 Jan 2023 | 2 years ago
Partial capture of text on file.
                                     SOMEVERYCHALLENGINGCALCULUSPROBLEMS
                   Joseph Breen
                       Here are two difficult calculus problems, solved using only (sophisticated and clever applications of)
                   elementary calculus. In particular, there is no complex analysis or use of the residue theorem, Fourier
                   series, or anything like that. Both problems were the basis for talks given at the UCLA GSO Seminar.
                       The integral is the concatenation of two integrals from [3]. The infinite series was originally evaluated
                   byothermethodsin[2],andthesolutionpresentedbelowisinspiredbythesolutionfrom[4],togetherwith
                   other computations found on the internet and my own computational decisions.
                   Contents
                   1   AReallyHardIntegral                                                                                                  1
                   2   AReallyHardInfiniteSeries                                                                                             6
                   1     AReallyHardIntegral
                   Theintegral we will evaluate is
                                                                  Z π                       
                                                              I =     2 arccos      cosx        dx.                                        (1)
                                                                    0            1+2cosx
                   Step 1: Rewrite the integrand with trigonometry and then introduce a double integral.
                                                                                                                      2
                       Webeginwithsometrigonometry. Recall the double angle identity cos(2θ) = 2cos θ −1. This implies
                                                                                                  q
                                      2                            2                           1+α
                   2θ = arccos 2cos θ −1 . Letting α = 2cos θ −1 yields θ = arccos                    2    , and thus
                                                                                                !
                                                              arccos(α) = 2arccos      r1+α .
                                                                                            2
                   Usingthis, the integral becomes
                                                                                               !
                                                                Z π             r
                                                                   2               1+3cosx
                                                           I =       2arccos       2+4cosx dx.
                                                                  0    |           {z           }
                                                                                   θ∗
                   Next, consider a right triangle with angle θ∗.
                                                                         1            q1+cosx
                                                                                         2+4cosx
                                                                  θ∗
                                                                    q1+3cosx
                                                                       2+4cosx
                       This picture implies                                  !                             !
                                                    arccos    r1+3cosx =arctan r 1+cosx
                                                                 2+4cosx                       1+3cosx
                                                                                1
                   andso                                                                    !
                                                                Z π           r
                                                                   2              1+cosx
                                                         I = 2      arctan       1+3cosx dx.
                                                                 0
                   With the goal of using the aforementioned double angle identity again, we make the substitution x = 2y.
                   Thendx=2dyandwehave
                                                               Z π         r               
                                                                  4             1+cos2y
                                                        I = 4      arctan       1+3cos2y       dy
                                                                0           s                 !
                                                               Z π                      2
                                                                  4                2cos y
                                                          =4       arctan       −2+6cos2y        dy
                                                                0
                                                               Z π                          !
                                                                  4               cosy
                                                          =4 0 arctan p                  2     dy.
                                                                                2−3sin y
                                                                           |       {z        }
                                                                                    b
                   Recall that R   21 2 dx = 1 arctan(x)+C. Thus,
                                  a +x        a          a
                                                 Z 1     1           1 Z 1      1           1            1
                                                               dt =                   dt =    arctan(bt)
                                                   0 1+b2t2          b2  0 b−2 +t2          b            0
                                                                  = 1 arctan(b).
                                                                     b
                   This implies
                                                          Z π                 Z 1
                                                             4      cosy                  1
                                                    I = 4      p                            2      dtdy
                                                           0               2    0 1+ cos y t2
                                                                  2−3sin y             2−3sin2y
                                                          Z π Z 1         p           2
                                                             4       cosy    2−3sin y
                                                      =4                    2         2  2 dtdy
                                                           0    0 2−3sin y+cos yt
                                                          Z π Z 1          p           2
                                                             4        cosy    2−3sin y
                                                      =4             2          2         2   dtdy.
                                                           0    0 (t +2)−(t +3)sin y
                       Next, we adjust constants in order to simplify the expression in the numerator. In particular, let siny =
                   q2sinw. Thencosydy =q2coswdw,andtheintegralbecomes
                      3                            3
                                                      Z π Z 1           √                      r
                                                         3                2cosw                  2
                                               I = 4             2          2      2    2   dt   3 coswdw
                                                       0    0 (t +2)−(t +3)3sin w
                                                     √ Z π Z 1                   2
                                                            3                cos w
                                                 =8 3                2            2         2   dtdw
                                                          0π 0 (3t +6)−(2t +6)sin w
                                                     √ Z 3 Z 1            cos2w
                                                 =8 3              2      2          2   dtdw
                                                          0    0 t +(2t +6)cos w
                                                     √ Z π Z 1
                                                            3               1
                                                 =8 3             t2 sec2 w + (2t2 + 6) dtdw.
                                                          0    0
                   Step 2: Use a trig substitution, partial fractions, then integration by parts.
                                                      2                     2         2                 2           2              1
                       Lets = tanw. Thends = sec wdw. Since1+tan w = sec w,wehavesec w = 1+s anddw = 1+s2 ds.
                   Thus,
                                                           Z √ Z
                                                        √       3   1            1                 1
                                                  I = 8 3                   2  2      2       dt      2 ds
                                                             0    0 (1+s )t +(2t +6)            1+s
                                                           Z √ Z
                                                        √       3   1             1
                                                    =8 3             (1+s2)(3t2 +t2s2 +6) dtds.
                                                             0    0
                                                                             2
                   Next, we decomposetheintegrandwithpartialfractions. We have
                                                     √ Z √3Z 1        1      1                t2       
                                               I = 8 3 0        0 2t2 +6      1+s2 − 3t2 +t2s2 +6          dtds.
                   Thetermsintheparenthesescanbeintegratedwithrespecttosusingtheinversetangent. Thus,weswitch
                   the order of integration.
                                                    √ Z 1Z √3        1      1               1      
                                              I = 8 3               2              2 −       6     2   dsdt
                                                         0   0    2t +6 1+s             3+t2 +s
                                                    √ Z 1      1    π          1             √3 
                                                =4 3 0 t2+33 −q                   6 arctanq           6  dt.
                                                                              3+ 2                 3+ 2
                                                                                   t                   t
                   HerewehaveagainusedthefactthatR 21 2 dx = 1 arctan(x)+C. Next,the 21 termcanbeintegrated
                                                                 a +x          a         a                    t +3
                   similarly with respect to t. This gives
                                              √ Z 1                  √ Z 1                               √ 
                                      I = 4π 3           1    dt −4 3            1    q 1       arctanq 3 dt
                                              3     0 t2 +3               0 (t2 +3)      3+ 6                3+ 6
                                                                                              2                    2
                                              √                                               t                   t
                                           4π 3 1              1         Z 1     1         t                 t    
                                        = 3 √ arctan √                 −4      (t2 + 3) √ 2       arctan    √2          dt
                                                     3             3        0              t +2               t +2
                                           2π2      Z 1          t                      t    
                                        = 9 −4             2     √2        arctan    √2         dt.
                                                      0 (t +3) t +2                    t +2
                       Next, we will integrate by parts. Let
                                                                 t                               t
                                                u=arctan √ 2                 and     dv =    2      √2       dt.
                                                                 t +2                      (t +3) t +2
                   Then                                           √
                                                                     2          t2
                                                          1         t +2−√2                        1
                                                du =            ·               t +2 dt =           √        dt.                          (2)
                                                      1+ t2             t2 +2              (t2 + 1)   t2 +2
                                                            2
                                                           t +2
                   Next, observe that
                                             d           p2                 1            t                t
                                            dx arctan(     t +2)= (1+t2+2 · √ 2                = 2        √2       .
                                                                                       t +2       (t +3) t +2
                                       √2
                   Thus, v = arctan( t +2). Integrating by parts with this set up yields
                                                                                                            √           
                                                                                           1   Z
                                        2π2                       t              p                 1 arctan( t2 +2)
                                   I =       −4arctan √                 arctan(    t2 +2) −                 √         dt
                                                                 2                                     2         2
                                          9                     t +2                             0   (t +1) t +2
                                                                                      !      0
                                           2                 Z 1          √2
                                        2π          π π           arctan( t +2)
                                     = 9 −4 6 · 3 −                 2     √2        dt
                                                              0   (t +1) t +2
                                          Z 1         √2
                                              arctan( t +2)
                                     =4          2     √2        dt.
                                           0   (t +1) t +2
                   Step 3: Differentiate under the integral.
                       Weintroduceanadditionalparameterintheintegrand:
                                                                       Z 1 arctan(z√t2 +2)
                                                             I(z) = 4          2     √2         dt.
                                                                         0   (t +1) t +2
                                                                               3
                  WeseekI =I(1). Bythefundamentaltheoremofcalculus,
                                     Z ∞I′(z)dz = lim I(z)−I(1)              ⇒       I = lim I(z)−Z ∞I′(z)dz.
                                       1              z→∞                                 z→∞           1
                  Wecomputeeachtermseparately.
                                                                   Z 1                    √2
                                                                       lim      arctan(z t +2)
                                                     lim I(z) = 4          z→∞       √              dt
                                                    z→∞                        2        2
                                                                    0        (t +1) t +2
                                                                   Z 1         π
                                                                               2
                                                               =4        2      √2       dt
                                                                    0 (t +1) t +2
                                                                                         
                                                                                       1
                                                                                  t      
                                                               =2πarctan √               
                                                                                 2       
                                                                                t +2 
                                                                                          0
                                                                  π2
                                                               = 3 .
                  Thesecondtolastequalitycomesfromourpreviouscomputationin(2).
                      Next,
                                      Z ∞               Z ∞Z 1                  √2        !
                                            ′                     d    arctan(z t +2)
                                           I (z)dz = 4            dz      2     √2           dtdz
                                       1                  1    0        (t +1) t +2
                                                        Z ∞Z 1           1                 1          p2
                                                    =4             2      √2       · 1 + z2(t2 + 2) ·   t +2dtdz
                                                          1    0 (t +1) t +2
                                                    =4Z ∞Z 1 2                1 2 2      2 dtdz.
                                                          1    0 (t +1)(1+z t +2z )
                  Wedecomposetheintegrandwithpartialfractions.
                                  Z ∞I′(z)dz = 4Z ∞Z 1          1     1 −              z2       dtdz
                                    1                 1    0 1+z2 1+t2           1+z2t2+2z2
                                                                                                         
                                                =4Z ∞       1      Z 1    1   dt −Z 1         z2        dt   dz
                                                      1   1+z2      0 1+t2           0 1+z2t2+2z2
                                                =4Z ∞       1    π −Z 1          1      dt dz
                                                          1+z2 4            2+ 1 +t2
                                                      1                  0       z2                              
                                                                     Z ∞
                                                                ∞             1          1                   1
                                                =πarctan(z)      −4               · q         arctanq           dz
                                                                           1+z2
                                                                1       1              2+ 1                2+ 1
                                                                                            z2                  z2
                                                   π2      Z ∞     1         1                  1     
                                                = 4 −4 1 1+z2 · q                1 arctanq         1  dz.
                                                                           2+z2                2+z2
                  Next, let r = 1. Then dz = − 1 dr, and the above integral becomes
                                 z                r2
                                        Z ∞I′(z)dz = π2 −4Z 1          1 1 · √ 1       arctan√ 1          1 dr
                                                         4           1+         2+r2               2+r2      r2
                                         1                        0      r2                             
                                                         π2     Z 1          1                      1
                                                      = 4 −4           2     √       2 arctan   √       2   dr.
                                                                  0 (r +1) 2+r                    2+r
                  Recall that                                       Z           √
                                                                      1 arctan( t2 +2)
                                                             I = 4        2     √2        dt.
                                                                     0  (t +1) t +2
                                                                            4
The words contained in this file might help you see if this file matches what you are looking for:

...Someverychallengingcalculusproblems joseph breen here are two difcult calculus problems solved using only sophisticated and clever applications of elementary in particular there is no complex analysis or use the residue theorem fourier series anything like that both were basis for talks given at ucla gso seminar integral concatenation integrals from innite was originally evaluated byothermethodsin andthesolutionpresentedbelowisinspiredbythesolutionfrom togetherwith other computations found on internet my own computational decisions contents areallyhardintegral areallyhardinniteseries theintegral we will evaluate z i arccos cosx dx step rewrite integrand with trigonometry then introduce a double webeginwithsometrigonometry recall angle identity cos this implies q letting yields thus r usingthis becomes next consider right triangle picture arctan andso goal aforementioned again make substitution x y thendx dyandwehave cosy dy s p sin b c dt bt t dtdy siny yt adjust constants order to sim...

no reviews yet
Please Login to review.