128x Filetype PDF File size 0.89 MB Source: fse.studenttheses.ub.rug.nl
faculty of mathematics and natural sciences Calculus of variations and its applications Bachelor Project Mathematics November 2015 Student: M. H. Mudde First supervisor: Dr. A. E. Sterk Second supervisor: Prof. dr. A. J. van der Schaft Abstract In this thesis, the calculus of variations is studied. We look at how opti- mization problems are solved using the Euler-Lagrange equation. Functions that satisfy this equation and the prescribed boundary conditions, must also satisfy Legendre’s condition and there must be no conjugate points in the interval in order to be the minimizer. Wegeneralize the Euler-Lagrange equation to higher dimensions and higher order derivatives to solve not only one-dimensional problems, but also multi- dimensional problems. At last we investigate the canonical form of the Euler-Lagrange equation. Keywords: optimization, functional, Euler-Lagrange equation, canonical form, Hamiltonian. Acknowledgements I want to thank my first supervisor Dr. A. E. Sterk for being the best su- pervisor I could wish for. Even though I do not live in Groningen, he helped mein the best possible way. I could send him my drafts whenever I wanted and as many time I wanted, and every time he gave me adequate feedback. I also want to thank my second supervisor Prof. dr. A. J. van der Schaft, for immediately willing to be my second supervisor. Contents 1 Introduction 3 2 Functions and functionals 5 2.1 Functions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5 2.2 Functionals . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5 2.3 Admissible functions . . . . . . . . . . . . . . . . . . . . . . . 6 3 Euler-Lagrange Equation 8 3.1 The first variation . . . . . . . . . . . . . . . . . . . . . . . . 8 3.2 Legendre transform . . . . . . . . . . . . . . . . . . . . . . . . 11 3.3 Degenerate cases . . . . . . . . . . . . . . . . . . . . . . . . . 12 3.4 The second variation . . . . . . . . . . . . . . . . . . . . . . . 12 3.5 Necessary and sufficient conditions that determine the nature of an extremum . . . . . . . . . . . . . . . . . . . . . . . . . . 16 4 Applications of the Euler-Lagrange equation 24 4.1 Curves of shortest length . . . . . . . . . . . . . . . . . . . . 24 4.2 Minimal surface of revolution . . . . . . . . . . . . . . . . . . 26 4.3 The brachistochrone problem . . . . . . . . . . . . . . . . . . 29 5 Multi-dimensional problems 32 5.1 Two independent variables . . . . . . . . . . . . . . . . . . . . 32 5.2 Several independent variables . . . . . . . . . . . . . . . . . . 35 5.3 Several dependent variables but one independent variable . . 37 5.4 Second order derivative . . . . . . . . . . . . . . . . . . . . . 39 5.5 Higher order derivatives . . . . . . . . . . . . . . . . . . . . . 42 5.6 Overview of the Euler-Lagrange equations . . . . . . . . . . . 43 6 Applications of the multi-dimensional Euler-Lagrange equa- tions 44 6.1 Minimal surfaces . . . . . . . . . . . . . . . . . . . . . . . . . 44 6.2 Second order derivative problem . . . . . . . . . . . . . . . . 46 1
no reviews yet
Please Login to review.