174x Filetype PDF File size 0.22 MB Source: www.cbsd.org
Geometry/Trig Name: __________________________ Unit 3 Review Packet – Answer Key Date: ___________________________ Section I – Name the five ways to prove that parallel lines exist. 1. If corresponding angles are congruent, then lines are parallel. 2. If alternate interior angles are congruent, then lines are parallel. 3. If alternate exterior angles are congruent, then lines are parallel. 4. If same side interior angles are supplementary, then lines are parallel. 5. If same side exterior angles are supplementary, then lines are parallel. Section II – Identify the pairs of angles. If the angles have no relationship, write none. 1. 7 &11 None 2. 3 &6 Alternate Interior Angles 1 2 9 10 3. 8 &16 Corresponding Angles a 3 4 11 12 4. 2 &7 Alternate Exterior Angles 5. 3 &5 Same Side Interior Angles b 5 6 13 14 7 8 15 16 6. 1 & 6 None 7. 1 & 6 None 8. 1 & 4 Vertical Angles Section III – Fill In Vertical angles are congruent. If lines are parallel, then corresponding angles are congruent. If lines are parallel, then alternate interior angles are congruent. If lines are parallel, then alternate exterior angles are congruent. If lines are parallel, then same side interior angles are supplementary. If lines are parallel, then same side exterior angles are supplementary. Geometry/Trig Name: __________________________ Unit 3 Review Packet – Page 2 – Answer Key Date: ___________________________ Section IV – Determine which lines, if any, are parallel based on the given information. 1.) m1 = m9 c // d a 1 2 9 10 2.) m1 = m4 None 3 4 11 12 3.) m12 + m14 = 180 a // b b 5 6 13 14 7 8 15 16 4.) m1 = m13 None c d 5.) m7 = m14 c // d 6.) m13 = m11 None 7.) m15 + m16 = 180 None 8.) m4 = m5 a //b Section IV – Determine which lines, if any, are parallel based on the given information. 1. m1 = m4 a // b 2. m6 = m8 t // s 3. 1 and 11 are supplementary None 4. a ^ t and b ^ t a // b 5. m14 = m5 None a b k m 6. 6 and 7 are supplementary t // s 15 7. m14 = m15 k // m 13 12 11 9 8 t 7 10 8. 7 and 8 are supplementary None 2 5 1 3 4 6 s 9. m5 = m10 k // m 14 10. m1 = m13 None Geometry/Trig Name: __________________________ Unit 3 Review Packet – Page 3 – Answer Key Date: ___________________________ Section V - Proofs J 1. Given: GK bisects JGI; m3 = m2 G 1 K Prove: GK // HI 2 Statements Reasons 1. GK bisects JGI 1. Given 2. m1 = m2 2. Definition of an Angles Bisector H 3 I 3. m3 = m2 3. Given 4. m1 = m3 4. Substitution 5. GK // HI 5. If corresponding angles are congruent, then the lines are parallel. 2. Given: AJ // CK; m1 = m5 Prove: BD // FE A C Statements Reasons 1. AJ // CK 1. Given B 1 2 3 D 4 2. m1 = m3 2. If lines are parallel, then corresponding angles are congruent. 5 F E 3. m1 = m5 3. Given J K 4. m3 = m5 4. Substitution 5. BD // FE 5. If corresponding angles are congruent, then the lines are parallel. Geometry/Trig Name: __________________________ Unit 3 Review Packet – Page 4 – Answer Key Date: ___________________________ 3. Given: a // b; 3 @ 4 Prove: 10 @ 1 1 2 a 3 4 Statements Reasons 5 1. a // b 1. Given 6 b 7 8 2. 4 @ 7 2. If lines are parallel then 10 9 alternate interior angles are congruent. c d 3. 3 @ 4 3. Given 4. 3 @ 7 4. Substitution 5. 1 @ 3; 7 @ 10 5. Vertical Angles Theorem 6. 10 @ 1 6. Substitution 4. Given: 1 and 7 are supplementary. b 1 3 Prove: m8 = m4 4 5 a 6 7 Statements Reasons 8 2 1. 1 and 7 are supplementary 1. Given 2. m1 + m7 = 180 2. Definition of Supplementary Angles 3. m6 + m7 = 180 3. Angle Addition Postulate 4. m1 + m7 = m6 + m7 4. Substitution 5. m1 = m6 5. Subtraction Property 6. a // b 6. If corresponding angles are congruent, then the lines are parallel. 7. m8 = m4 7. If lines are parallel, then corresponding angles are congruent.
no reviews yet
Please Login to review.