144x Filetype PDF File size 0.40 MB Source: www.kth.se
Abrief introduction to Semi-Riemannian geometry and general relativity Hans Ringstr¨om May 5, 2015 2 Contents 1 Scalar product spaces 1 1.1 Scalar products . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1 1.2 Orthonormal bases adapted to subspaces . . . . . . . . . . . . . . . . . . . . . . . . 3 1.3 Causality for Lorentz scalar product spaces . . . . . . . . . . . . . . . . . . . . . . 4 2 Semi-Riemannian manifolds 7 2.1 Semi-Riemannian metrics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7 2.2 Pullback, isometries and musical isomorphisms . . . . . . . . . . . . . . . . . . . . 8 2.3 Causal notions in Lorentz geometry . . . . . . . . . . . . . . . . . . . . . . . . . . . 10 2.4 Warped product metrics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11 2.5 Existence of metrics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11 2.6 Riemannian distance function . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12 2.7 Relevance of the Euclidean and the Minkowski metrics . . . . . . . . . . . . . . . . 13 3 Levi-Civita connection 15 3.1 The Levi-Civita connection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15 3.2 Parallel translation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18 3.3 Geodesics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20 3.4 Variational characterization of geodesics . . . . . . . . . . . . . . . . . . . . . . . . 22 4 Curvature 25 4.1 The curvature tensor . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25 4.2 Calculating the curvature tensor . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27 4.3 The Ricci tensor and scalar curvature . . . . . . . . . . . . . . . . . . . . . . . . . 27 4.4 The divergence, the gradient and the Laplacian . . . . . . . . . . . . . . . . . . . . 29 4.5 Computing the covariant derivative of tensor fields . . . . . . . . . . . . . . . . . . 29 4.5.1 Divergence of a covariant 2-tensor field . . . . . . . . . . . . . . . . . . . . . 30 4.6 An example of a curvature calculation . . . . . . . . . . . . . . . . . . . . . . . . . 31 4.6.1 Computing the connection coefficients . . . . . . . . . . . . . . . . . . . . . 32 4.6.2 Calculating the components of the Ricci tensor . . . . . . . . . . . . . . . . 33 4.7 The 2-sphere and hyperbolic space . . . . . . . . . . . . . . . . . . . . . . . . . . . 34 i ii CONTENTS 4.7.1 The Ricci curvature of the 2-sphere . . . . . . . . . . . . . . . . . . . . . . . 35 4.7.2 The curvature of the upper half space model of hyperbolic space . . . . . . 36
no reviews yet
Please Login to review.