151x Filetype PDF File size 0.68 MB Source: www.dsf.unica.it
“Notes of Fluid Mechanics” Piero Olla ISAC-CNR and INFN, Sez. Cagliari, I–09042 Monserrato, Italy June 9, 2022 Contents 1 Continuous limit 2 1.1 Suggested reading . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4 2 Fluid kinematics 5 2.1 Lagrangian and Eulerian description of a flow . . . . . . . . . . . . . . . . . . . . 5 2.2 Lagrangian transport of a vector field . . . . . . . . . . . . . . . . . . . . . . . . . 7 2.3 Vorticity, rate of strain and compression rate . . . . . . . . . . . . . . . . . . . . 10 2.4 Application to Hamiltonian dynamics . . . . . . . . . . . . . . . . . . . . . . . . . 11 2.5 Suggested reading . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13 3 Conservation of mass and momentum 14 3.1 Suggested reading . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16 4 Constitutive laws 17 4.1 The Navier-Stokes equation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17 4.2 Condition of local thermodynamic equilibrium . . . . . . . . . . . . . . . . . . . . 18 4.2.1 Digression into plasma physics . . . . . . . . . . . . . . . . . . . . . . . . 19 4.3 Microscopic interpretation of pressure and viscosity . . . . . . . . . . . . . . . . . 20 4.4 Non-Newtonian fluids . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22 4.5 Suggested reading . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23 5 Conservation of energy 24 5.1 Kinetic energy balance . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24 5.2 Heat transport . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25 5.3 Isoentropic flow . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26 5.4 Propagation of sound . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27 5.5 Bernoulli’s equation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 5.6 Suggested reading . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 6 Hydrostatics 31 6.1 Stability under convection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32 6.2 Suggested reading . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34 1 7 Compressible flows 35 7.1 The Boussinesq approximation . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36 7.2 The Burgers equation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39 7.2.1 Viscous Burgers equation . . . . . . . . . . . . . . . . . . . . . . . . . . . 40 7.2.2 The method of characteristics . . . . . . . . . . . . . . . . . . . . . . . . 42 7.3 Suggested reading . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43 8 Ideal and viscous flows 44 8.1 Potential flows . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45 8.2 Fluid inertia . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47 8.3 Gravity waves . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49 8.3.1 Viscous corrections . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51 8.4 Viscous flows . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52 8.5 Suggested reading . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54 9 Vorticity dynamics 55 9.1 Kelvin’s theorem . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55 9.2 Helicity conservation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58 9.3 Two-dimensional flows . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60 9.4 Invariance under relabeling . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61 9.5 Suggested reading . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64 10 Turbulence 65 10.1 Homogeneous isotropic turbulence . . . . . . . . . . . . . . . . . . . . . . . . . . 67 10.1.1 Time structure of the inertial range . . . . . . . . . . . . . . . . . . . . . 70 10.1.2 Transport of a passive scalar . . . . . . . . . . . . . . . . . . . . . . . . . 70 10.1.3 Two-dimensional turbulence . . . . . . . . . . . . . . . . . . . . . . . . . 72 10.2 Suggested reading . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73 1 Continuous limit Weare interested in the description of fluids at macroscopic scales such that effects from the discrete nature of the medium can be disregarded. In other words, we are focusing on phenomena at scales l, much larger than the typical molecular separation a0. The typical number Nl of molecules in a volume Vl of linear size l, therefore, will be very large, N ∼(l=a )3 ≫ 1; (1.1) l 0 and the relative fluctuation δNl=Nl very small; we can thus approximate instanta- neous quantities with their average with respect to fluctuations from discrete effects, Nl ≃ hNli. The lenght l defines the spatial scale of variation of the macroscopic variables of interest in the fluid. This allows us to define macroscopic quantities through a process of of coarse graining at an intermediate scale a, a0 ≪ a ≪ l, such that the variation of macroscopic quantities at scale a is small, and the relative fluctuation magnitude of these quantities is small as well. 2 Let us start with the density n. We first define a corse-grained density na(x;t) = Na(x;t) ≃ hNa(x;t)i = hna(x;t)i (1.2) Va Va and then exploit the condition a0 ≪ a ≪ l to formally carry out the continuous limit n(x;t) = limna(x;t): (1.3) a→0 We follow the same procedure with the current density J and fluid velocity u(x;t). We indicate with vi(t) the instantaneous velocities of the molecules in Va = Va(x) and define n(x;t)u(x;t) = J(x;t) = limV−1 Xvi(t); (1.4) a→0 a i∈Va Weshall focus in this course on systems composed of a single species of molecules. The density n and the current density J will then be proportional, through the molecular mass m, to the mass density ρ and the mass current density Jm: ρ = mn; J =mJ: (1.5) m Macroscopic quantities such as the density n and the fluid velocity u are sums of microscopic contributions by the individual molecules. If the interaction of the molecules is not too strong, it is possible to consider the microscopic contributions as statistical independent. This hypthesis allows us to estimate the fluctuation amplitude of macroscopic quantities. Suppose we have N molecules contributing to the sum; indicate with xi the contribution by the ith molecule and with X = PN xi i the macroscopic quantity. We suppose the xi to be identically distributed variables with average hx i = µ and RMS h(x −µ)2i1=2 = σ . We have for the average of X: i x i x µX =Nµx (1.6) and for its RMS: σ2 =h(X −µX)2i=Xh(xi−µ)(xj −µ)i: (1.7) X ij Statistical independence, however, implies that the xi’s are uncorrelated: h(x −µ)(x −µ)i = σ2δ : (1.8) i j ij Hence only terms with i = j in Eq. (1.7) contribute to σ2 and we are left with X σ2 =Nσ2: (1.9) X x 3 Thus, for large N, δX ∼ σX ∼N−1=2: (1.10) X µX As an application, let us evaluate the fluctuation in the occupation number Na in a volume Va. Indicate with N the number of molecules in the fluid that could potentially lie in Va and introduce a random variable xi that is = 1 if i ∈ Va, =0otherwise. We consider identically distributed molecules, indicating with p the probability that a given molecule lies in Va at a given time. We immediately find µ =p and; σ2 = hx2i−µ2 = p−p2; (1.11) x x i x and therefore, from Eqs. (1.6) and (1.9), µ =pN; σ2 =(p−p2)N; (1.12) Na Na which implies p 2 δN ∼ (p −p )N = (1−p)1=2N−1=2 ∼ N−1=2: (1.13) N pN We can carry out the same reasoning with the other macroscopic quantities we have introduced in this section, and we obtain δna ∼ δJa ∼ δua ∼ δNa ∼ (na3)−1=2: (1.14) n J u Na The condition for a continuous limit can then be reformulated as nl3 ≫ 1: (1.15) Weconcludethesectionbyintroducingaconceptthatwillaccompanyusthrough- out the course: that of fluid element (or fluid parcel). A “fluid element” is simply a portion of the fluid that, on time scales of interest, is not significantly deformed by the gradients of u(x;t). We define more precisely fluid element by the condition that points on its surface move with the local fluid velocity u(x;t). This requirement guarantees that the mass in the volume remains constant, even though molecules continuously cross the volume boundary. We use the notation VL to make clear that a given volume (non necessarily a fluid element) is transported by the flow. Note that the motion of a fluid element is identical to that of a solid particle small enough to be transported by the fluid without exerting any feedback force. We call such an object a passive tracer. 1.1 Suggested reading • L.D. Landau and E.M. Lifshitz, “Statistical Physics” Vol. 5, Secs. 1, 2 and 114 (Pergamon Press, 1980) 4
no reviews yet
Please Login to review.