jagomart
digital resources
picture1_Dynamics Pdf 158041 | Appunti


 151x       Filetype PDF       File size 0.68 MB       Source: www.dsf.unica.it


File: Dynamics Pdf 158041 | Appunti
notes of fluid mechanics piero olla isac cnr and infn sez cagliari i 09042 monserrato italy june 9 2022 contents 1 continuous limit 2 1 1 suggested reading 4 2 ...

icon picture PDF Filetype PDF | Posted on 19 Jan 2023 | 2 years ago
Partial capture of text on file.
                             “Notes of Fluid Mechanics”
                                                                Piero Olla
                                 ISAC-CNR and INFN, Sez. Cagliari, I–09042 Monserrato, Italy
                                                              June 9, 2022
                   Contents
                   1   Continuous limit                                                                                     2
                       1.1    Suggested reading . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .     4
                   2   Fluid kinematics                                                                                     5
                       2.1    Lagrangian and Eulerian description of a flow . . . . . . . . . . . . . . . . . . . .          5
                       2.2    Lagrangian transport of a vector field . . . . . . . . . . . . . . . . . . . . . . . . .       7
                       2.3    Vorticity, rate of strain and compression rate      . . . . . . . . . . . . . . . . . . . .  10
                       2.4    Application to Hamiltonian dynamics . . . . . . . . . . . . . . . . . . . . . . . . .        11
                       2.5    Suggested reading . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .    13
                   3   Conservation of mass and momentum                                                                   14
                       3.1    Suggested reading . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .    16
                   4   Constitutive laws                                                                                   17
                       4.1    The Navier-Stokes equation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .       17
                       4.2    Condition of local thermodynamic equilibrium . . . . . . . . . . . . . . . . . . . .         18
                              4.2.1    Digression into plasma physics . . . . . . . . . . . . . . . . . . . . . . . .      19
                       4.3    Microscopic interpretation of pressure and viscosity . . . . . . . . . . . . . . . . .       20
                       4.4    Non-Newtonian fluids . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .      22
                       4.5    Suggested reading . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .    23
                   5   Conservation of energy                                                                              24
                       5.1    Kinetic energy balance . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .     24
                       5.2    Heat transport    . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  25
                       5.3    Isoentropic flow . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .    26
                       5.4    Propagation of sound . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .     27
                       5.5    Bernoulli’s equation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .   28
                       5.6    Suggested reading . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .    30
                   6   Hydrostatics                                                                                        31
                       6.1    Stability under convection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .     32
                       6.2    Suggested reading . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .    34
                                                                       1
                   7    Compressible flows                                                                                      35
                        7.1    The Boussinesq approximation         . . . . . . . . . . . . . . . . . . . . . . . . . . . .    36
                        7.2    The Burgers equation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .        39
                               7.2.1    Viscous Burgers equation . . . . . . . . . . . . . . . . . . . . . . . . . . .         40
                               7.2.2    The method of characteristics . . . . . . . . . . . . . . . . . . . . . . . .          42
                        7.3    Suggested reading . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .       43
                   8    Ideal and viscous flows                                                                                 44
                        8.1    Potential flows     . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .    45
                        8.2    Fluid inertia . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .     47
                        8.3    Gravity waves . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .       49
                               8.3.1    Viscous corrections . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .        51
                        8.4    Viscous flows . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .        52
                        8.5    Suggested reading . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .       54
                   9    Vorticity dynamics                                                                                     55
                        9.1    Kelvin’s theorem . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .        55
                        9.2    Helicity conservation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .       58
                        9.3    Two-dimensional flows . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .          60
                        9.4    Invariance under relabeling      . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .    61
                        9.5    Suggested reading . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .       64
                   10 Turbulence                                                                                               65
                        10.1   Homogeneous isotropic turbulence         . . . . . . . . . . . . . . . . . . . . . . . . . .    67
                               10.1.1   Time structure of the inertial range . . . . . . . . . . . . . . . . . . . . .         70
                               10.1.2   Transport of a passive scalar . . . . . . . . . . . . . . . . . . . . . . . . .        70
                               10.1.3   Two-dimensional turbulence . . . . . . . . . . . . . . . . . . . . . . . . .           72
                        10.2   Suggested reading . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .       73
                   1       Continuous limit
                   Weare interested in the description of fluids at macroscopic scales such that effects
                   from the discrete nature of the medium can be disregarded. In other words, we are
                   focusing on phenomena at scales l, much larger than the typical molecular separation
                   a0. The typical number Nl of molecules in a volume Vl of linear size l, therefore,
                   will be very large,
                                                            N ∼(l=a )3 ≫ 1;                                                (1.1)
                                                               l         0
                   and the relative fluctuation δNl=Nl very small; we can thus approximate instanta-
                   neous quantities with their average with respect to fluctuations from discrete effects,
                   Nl ≃ hNli.
                        The lenght l defines the spatial scale of variation of the macroscopic variables
                   of interest in the fluid. This allows us to define macroscopic quantities through a
                   process of of coarse graining at an intermediate scale a, a0 ≪ a ≪ l, such that the
                   variation of macroscopic quantities at scale a is small, and the relative fluctuation
                   magnitude of these quantities is small as well.
                                                                          2
                  Let us start with the density n. We first define a corse-grained density
                                na(x;t) = Na(x;t) ≃ hNa(x;t)i = hna(x;t)i                     (1.2)
                                              Va          Va
               and then exploit the condition a0 ≪ a ≪ l to formally carry out the continuous
               limit
                                            n(x;t) = limna(x;t):                              (1.3)
                                                      a→0
                  We follow the same procedure with the current density J and fluid velocity
               u(x;t).  We indicate with vi(t) the instantaneous velocities of the molecules in
               Va = Va(x) and define
                                 n(x;t)u(x;t) = J(x;t) = limV−1 Xvi(t);                       (1.4)
                                                           a→0 a
                                                                   i∈Va
               Weshall focus in this course on systems composed of a single species of molecules.
               The density n and the current density J will then be proportional, through the
               molecular mass m, to the mass density ρ and the mass current density Jm:
                                           ρ = mn;      J =mJ:                                (1.5)
                                                          m
                  Macroscopic quantities such as the density n and the fluid velocity u are sums
               of microscopic contributions by the individual molecules. If the interaction of the
               molecules is not too strong, it is possible to consider the microscopic contributions
               as statistical independent.  This hypthesis allows us to estimate the fluctuation
               amplitude of macroscopic quantities. Suppose we have N molecules contributing to
               the sum; indicate with xi the contribution by the ith molecule and with X = PN xi
                                                                                               i
               the macroscopic quantity. We suppose the xi to be identically distributed variables
               with average hx i = µ and RMS h(x −µ)2i1=2 = σ . We have for the average of X:
                              i     x               i             x
                                                 µX =Nµx                                      (1.6)
               and for its RMS:
                                 σ2 =h(X −µX)2i=Xh(xi−µ)(xj −µ)i:                             (1.7)
                                  X
                                                        ij
               Statistical independence, however, implies that the xi’s are uncorrelated:
                                         h(x −µ)(x −µ)i = σ2δ :                               (1.8)
                                             i       j            ij
               Hence only terms with i = j in Eq. (1.7) contribute to σ2 and we are left with
                                                                        X
                                                 σ2 =Nσ2:                                     (1.9)
                                                   X       x
                                                        3
                                                            Thus, for large N,
                                                                                                                                                                                            δX ∼ σX ∼N−1=2:                                                                                                                                                                                           (1.10)
                                                                                                                                                                                              X                          µX
                                                            As an application, let us evaluate the fluctuation in the occupation number Na in
                                                            a volume Va. Indicate with N the number of molecules in the fluid that could
                                                            potentially lie in Va and introduce a random variable xi that is = 1 if i ∈ Va,
                                                            =0otherwise. We consider identically distributed molecules, indicating with p the
                                                            probability that a given molecule lies in Va at a given time. We immediately find
                                                                                                                                          µ =p and;                                                                     σ2 = hx2i−µ2 = p−p2;                                                                                                                                                          (1.11)
                                                                                                                                                x                                                                            x                          i                         x
                                                            and therefore, from Eqs. (1.6) and (1.9),
                                                                                                                                                                     µ                 =pN; σ2 =(p−p2)N;                                                                                                                                                                                              (1.12)
                                                                                                                                                                           Na                                                     Na
                                                            which implies
                                                                                                                                                             p                                   2
                                                                                                                                 δN ∼                                  (p −p )N = (1−p)1=2N−1=2 ∼ N−1=2:                                                                                                                                                                                              (1.13)
                                                                                                                                   N                                             pN
                                                                           We can carry out the same reasoning with the other macroscopic quantities we
                                                            have introduced in this section, and we obtain
                                                                                                                                                     δna ∼ δJa ∼ δua ∼ δNa ∼ (na3)−1=2:                                                                                                                                                                                                               (1.14)
                                                                                                                                                         n                             J                             u                          Na
                                                            The condition for a continuous limit can then be reformulated as
                                                                                                                                                                                                                   nl3 ≫ 1:                                                                                                                                                                           (1.15)
                                                                           Weconcludethesectionbyintroducingaconceptthatwillaccompanyusthrough-
                                                            out the course: that of fluid element (or fluid parcel). A “fluid element” is simply
                                                            a portion of the fluid that, on time scales of interest, is not significantly deformed
                                                            by the gradients of u(x;t). We define more precisely fluid element by the condition
                                                            that points on its surface move with the local fluid velocity u(x;t). This requirement
                                                            guarantees that the mass in the volume remains constant, even though molecules
                                                            continuously cross the volume boundary. We use the notation VL to make clear that
                                                            a given volume (non necessarily a fluid element) is transported by the flow. Note
                                                            that the motion of a fluid element is identical to that of a solid particle small enough
                                                            to be transported by the fluid without exerting any feedback force. We call such an
                                                            object a passive tracer.
                                                            1.1                            Suggested reading
                                                                           • L.D. Landau and E.M. Lifshitz, “Statistical Physics” Vol. 5, Secs. 1, 2 and
                                                                                     114 (Pergamon Press, 1980)
                                                                                                                                                                                                                                           4
The words contained in this file might help you see if this file matches what you are looking for:

...Notes of fluid mechanics piero olla isac cnr and infn sez cagliari i monserrato italy june contents continuous limit suggested reading kinematics lagrangian eulerian description a ow transport vector eld vorticity rate strain compression application to hamiltonian dynamics conservation mass momentum constitutive laws the navier stokes equation condition local thermodynamic equilibrium digression into plasma physics microscopic interpretation pressure viscosity non newtonian uids energy kinetic balance heat isoentropic propagation sound bernoulli s hydrostatics stability under convection compressible ows boussinesq approximation burgers viscous method characteristics ideal potential inertia gravity waves corrections kelvin theorem helicity two dimensional invariance relabeling turbulence homogeneous isotropic time structure inertial range passive scalar weare interested in at macroscopic scales such that eects from discrete nature medium can be disregarded other words we are focusing on...

no reviews yet
Please Login to review.