135x Filetype PDF File size 0.38 MB Source: users.physics.ox.ac.uk
Classical Mechanics LECTURE21: SYSTEMSOFPARTICLES ANDMOMENTOFINERTIA Prof. N. Harnew University of Oxford HT2017 1 OUTLINE:21. SYSTEMSOFPARTICLESANDMOMENT OFINERTIA 21.1 NII for system of particles - translation motion 21.1.1 Kinetic energy and the CM 21.2 NII for system of particles - rotational motion 21.2.1 Angular momentum and the CM 21.3 Introduction to Moment of Inertia 21.3.1 Extend the example : J not parallel to ω 21.3.2 Moment of inertia : mass not distributed in a plane 21.3.3 Generalize for rigid bodies 2 21.1 NII for system of particles - translation motion Reminder from MT lectures: ◮ Force on particle i: m d2(r ) = F ext +F int i dt2 i i i N 2 N N X d X X P ◮ mi (r ) = Fext + Fint = NFext dt2 i i i i i |i {z } |i {z } |i {z } all masses external forces internal forces = zero P mr ◮ r = N i i CM i M P where M = N m i i P mr˙ ◮ v =r˙ = N i i CM CM i M P → P = Nmir˙ =Mv CM i i CM P m¨r Fext ◮ a =¨r = N i i = i CM CM i M M 3 21.1.1 Kinetic energy and the CM P ◮ Lab kinetic energy : T = 1 N mi v2 ; v = v′ +v 2 i i i i CM where v′ is velocity of particle i in the CM i ◮ T = 1 P m v′2 + 1 P m v2 +Pmv′·v 2 i i i 2 i i CM i i i CM P Pmv′ ◮ But mv′·v = i i i ·Mv i i i CM M CM | {z } =0 ◮ T =T′+1Mv2 2 CM Sameexpression as was derived in MT 4
no reviews yet
Please Login to review.